

    
      
          
            
  
Coa Documentation

[image: Read the Docs "Build" Badge]Specification





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  

home: true
heroImage: /icon.svg
features:


	title: Clean
details: Coa allows writing complex code with only using minimal types of characters.


	title: Objective
details:


	title: Asynchronous
details: Coa is designed to be easy to code asynchronously.
footer: Coa by Colourdelete Website may contain cookies used by Gitlab. Since this website itself (https://colourdelete.gitlab.io/coa) is static, it does not and usually cannot collect of se cookies. However, gitlab.com or GitLab might use and ccollect cookies.






[image: Pipeline Status]Pipeline Status


What is Coa?


Coa is a clean and multi-paradigm programming language that supports easy asynchronization.







Coa is simple and easy.

.class(
  ( length, ).(),
  ().( .return( 'A chain with "length" links', ), ).=( str, ),
).=( chain, ),





class chain():
  def __init__(self, length):
    self.length = length
  def __str__(self):
    return 'A chain with {} link(s)'.format(self.length)





[[toc]]




How does Coa work?

A compiler converts Coa code to another programming language (Go for the default), which in turn compiles it to machine language. Some features may be unavailable or slow depending on the compiler. This compiler (this repo) converts Coa code into Go code using a Python program. It does not run commands such as go run or go build as of March 2020.

If the graph below doesnt appear, use [a copy on GitLab]https://gitlab.com/colourdelete/coa/-/blob/master/docs/README.md).

graph TD
  A(Coa Program) -->|"Coa Compiler - Compile Coa🡲Go"| B(Go Program)
  B -->|"Go Compiler - Compile Go🡲Executable"| C(Executable Program)









          

      

      

    

  

    
      
          
            
  
Getting Started

This guide helps you start coding in Coa quickly. Coa is easy to learn but is different from other programming languages such as Python, Go, and Rust.


Setting Up


	Install the following:


	Python 3.8+


	Go 1.14+


	(Optional) A Go IDE


	(Optional) A Python IDE






	Download the latest release of Coa


	(Optional) Add coa/src to PATH


	Test it:


	Navigate to coa/docs/examples


	Run the example hello.coa.


	If the program outputs

Hello. This is your environment now.
[✓] Coa
  [✓] Coa                    0.1      (0.1+)
  [✓] Coa Standard Libraries 0.1      (0.1+)
  [✓] Coa Library Manager    0.1      (0.1+)
  [✓] PATH
[✓] Environment
  [✓] Python                 3.8      (3.8+)
  [✓] Go                     1.14     (1.14+)
  [✓] PyCharm                2020.1   (2020+)
  [✓] GoLand                 2020.1.1 (2020+)





, the setup process is complete.












First Program

Again, Coa is simple, and easy to learn, but also different from other languages. People familiar with languages different from Coa may cringe a little.

(
  .print('Hello, world!'),
  .print('This is actually compiled to Go, then compiled and/or run.'),
)





This program outputs:

Hello, world!
This is actually compiled to Go, then compiled and/or run.











          

      

      

    

  

    
      
          
            
  
Coa Spec


Program

Every program may start with ( and end with ). It can contain
zero or more Command.

(
  *Command*
)








Command

Every command is a EvokeCall or DefineCall or Object. May have a
? at the end.







          

      

      

    

  

    
      
          
            
  
Tutorial

Inspired by The Python Tutorial [https://docs.python.org/3/tutorial].

Coa is a clean and multi-paradigm programming language that supports easy asynchronization. Coa has high-level object structures and a simple approach to object-oriented programming. Coa’s clean syntax and semi-compiled nature makes it an ideal language for development in most environments.


Why Coa?

When you do stuff on computers, you’ll find tasks that you want/need to automate. For example, you might want to replace text in a large number of files/data, or make a GUI for your local NAS, or track your inventory using a database.

You might be using other languages such like Java, C, C++, C#, or Swift but they may take some time to compile (C++), or may be too verbose (Java) and hard to learn (C++). Coa is your companion.

Coa is semi-compiled into Go [https://golang.org], which either compiles or interprets it. Because of this, it can be both compiled into binary files with ease and run on-the-fly with a Go interpreter. This makes it easy to write one-file programs to automate a one-time task, such as the number of factors of 12345678 (24).

Coa programs can be written consicely and readably. This is for several reasons:


	The high-level objects allow complex expressions in a single “statement”


	No object declarations are necessary (a variable can’t “not exist”, so you can’t get something like a NameError)


	Putting together commands are easier




Coa programs should never be long. They are best when they are short, and extending using pods (packages) and other files is encouraged.




How to Start

A good place to start is by writing a small program that ensures that all necessary entities are working by evoking coa status, coa doctor, or coa diagnosis. If you see an output similar to the one below, the environment is fine.

$ coa status
Coa 1.0.0 δ
[✓] Coa 1.0.0 δ
  [✓] Compiler (dev.coa.compiler)
  [✓] Path Config (/opt/coa)
  [✓] Doctor
  [✓] Coa Pod 1.0.0 δ (dev.coa.pod)
[✓] Go 1.14.3
  [✓] Go (/usr/local/go)
  [✓] Compiler (/usr/local/go)
  [✓] Interpreter (yaegi)
[✓] IDE (0 IDEs found)





Let’s write our (first) Coa program!

Write the following text into a file named first-program.coa

.out('This is Coa ".coa.version" ".coa.channel". ', ),





Use coa run or coa build to run or build the Coa program. coa run defaults to a interpreter if found.

::: warning
The output shown below is a snapshot of the output. When running on a terminal, the big dots will move around like a progress bar.
:::

Using coa run:

$ coa run first-program.coa
●∙∙ ∙∙∙ ∙∙∙ Parsing      from Coa





::: tip
You might see ●●● ∙●∙ ∙●∙ Interpreting from Coa if a Coa interpreter is available.
:::

$ coa run first-program.coa
●●● ∙●∙ ∙∙∙ Compiling    from Coa





$ coa run first-program.coa
●●● ●●● ∙∙● Interpreting from Go





$ coa run first-program.coa
●●● ●●● ●●● Compiled in 1.978 s
This is Coa 1.0.0 δ.





Using coa build:

$ coa build first-program.coa
●∙∙ ∙∙∙ ∙∙∙ Parsing      from Coa





::: tip
You might see ●●● ∙●∙ ∙●∙ Compiling from Coa if a Coa compiler that compiles to binary/assembly is available.
:::

$ coa build first-program.coa
●●● ∙●∙ ∙∙∙ Compiling    from Coa





$ coa build first-program.coa
●●● ●●● ∙∙● Compiling    from Go





$ coa build first-program.coa
●●● ●●● ●●● Compiled in 1.978 s
$ first-program
This is Coa 1.0.0 δ.





::: tip
Even though the tutorial portion above shows multiple snapshots, subsequent portions would not, expect when showing features shown best with time unless known/mentioned already in a previous/current portion.
:::

Here’s an explanation of the above Coa program.

The first function in our program, .out is similar to a print or PrintLn function. It takes a object and writes the string representation to stdout. Also, there is .in and .err for reading and writing from and to stdin and stderr.

::: tip
Even though there are aliases such as .print or .println, .io.out or .out is preferred due to clarity or conciseness.
:::

The first argument inside the first .out evoke is a text, 'This is Coa ".coa.version" ".coa.channel". ', which embeds the Coa version and Coa channel into the text and prints it out to stdout. .coa.version returns the version of Coa that was/is compiled against, or the version of Coa that was/is interpreted against. .coa.channel returns the channel of Coa (same as above for specifics).

Coa programs can have embeddings in programs using " and enclosing objects inside them. This can be done in text, as well as program source. Here’s an example:

.range(0, 99, ).for(
    (i, ).(
        var-"i" = "i",
    ),
),
.out(var-0, ),
.out(var-44, ),
.out(var-99, ),





0
44
99





In this program, Coa defines 100 variables from var-0 to var-99, and prints them out. As you can see, instead of hard-coding them, we made 100 separate variables using a for loop (var-0~99)!







          

      

      

    

  

    
      
          
            
  
[OLD] Tutorial

This tutorial teaches the basics of Coa by example.


Function Call

(
  .print('Hello, world!',),
)





Object(Arguments)

Object is the callee of the call. Arguments is the argument for the callee, and is a Container.




Define Call

(
  site_url = 'https://example.com',
)





Object = Object




Object

(
  true,
  1.1,
  1,
  'one',
  .print,
  ().(.print('Function evoked.',),),
)





Object




Control Flow (If, Else, …)

(
  
  .if(











          

      

      

    

  

    
      
          
            
  
Coa Docs





          

      

      

    

  

    
      
          
            
  
Coa API

[[ toc ]]

(Simple Object)[/docs/api/simple.html]





          

      

      

    

  

    
      
          
            
  
Simple Object

[[ toc ]]


.object

::: tip
Even though objects are simple, that doesn’t mean that its inheritors are!
:::


.object()


Patterns


	.object()







Raises

Raises no exceptions.

::: warning
Even though objects raises no exceptions on its own, some exceptions such as .coa.exceptions.memory.unavailable or .coa.exceptions.permits.unpermitted.
:::




Description

The root object. All other object are inheitors of .object.

::: tip
Even if .class is used without an inheritee, it still uses .object as it’s inheritee.
(Inheritee is not a real word, but it is used to describe who the inheritor inherited from.)
:::






.object.=()


Patterns


	object.=(object_2, )







Raises


	.object.exceptions.unusable when object..name and object_2..name are both .none







Description

Changes object or object_2 to have the contents of object_2 or object.


	If object..name is .none and object_2..name is not .none, object’s contents clones object_2 contents.


	If object_2..name is .none and object..name is not .none, object_2’s contents clones object contents.


	If object_2..name is .none and object..name is .none, object.= raises .object.exceptions.unusable.


	If object_2..name is not .none and object..name is not .none, object_2’s contents clones object contents.




::: danger
This is a dangerous warning
:::

::: details
This is a details block, which does not work in IE / Edge
:::











          

      

      

    

  

    
      
          
            
  
Coa Command-Line Interface

The coa command manages your programs and projects.



Behold, the power of coa: [https://requests.readthedocs.io/en/master/]

user@machine:~/projects/hako_dialogs$ coa diagnose
Coa Diagnosis:
! Go Tools - used to compile Coa programs
  i Version 1.13.0
  ! Version 1.14.3 is available: download it from:
    https://golang.org
✓ Python Tools - used to compile Coa programs
  i Version 3.8.3 (latest version)
✓ Coa Kit - used to develop Coa programs
  i Version 0.0.0 (latest version)
✘ Project "Hako GUI Dialogs Example" Dependencies
  ✘ Missing: dev.coa.hako.widgets.dialogs, and 2 others
  i Fix using `coa pod set`
user@machine:~/projects/hako_dialogs$ pod set
Side Note: This is not static!
┌─███████░░░ dev.coa.hako.widgets.dialogs
├─██████░░░░ dev.coa.hako.widgets.windows
├─███████░░░ dev.coa.hako.widgets.scrolls
├─██████░░░░ dev.coa.hako.widgets.buttons
├─████░░░░░░ dev.coa.hako.widgets.styles
├─████████░░ dev.coa.hako.core
└─██░░░░░░░░ dev.coa.hako.bindings.side
┌─██████████ dev.coa.examples.hako.dialogs 
├─█████████░ dev.coa.core.io.streams
└─███████░░░ dev.coa.core.logging
user@machine:~/projects/gui_hello$ pod run
Side Note: This doesn't actually happen!
╭─Coa Dialog Example───────────────────────˅˄×╮
│                                             │
│ [Password˅]  [dev.coa.hako.dialogs.input]  ˄│
│ [Yes˅] [No˅] [dev.coa.hako.dialogs.choice] ╹│
│ [Password˅]  [dev.coa.hako.dialogs.colour] ˅│
│                                             │
╰─────────────────────────────────────────────╯









          

      

      

    

  

    
      
          
            
  
Coa Spec


Pods (packages)

Coa “pods” are collections of Coa programs, like packages in other languages
and containers (app containerization). Coa pods are meant to be small, and
access other pods for additional functionality. A good example of this is
Flask, where there is basic functionality in the Flask package, but has
plugins such as Flask-Admin to add extra functionality.

Each pod should be structured as follows. Objects starting with * are optional.

server
├─*LICENSE
├─*license
├─*README.md
├─*readme.md
├─info
| ├─main.cod
| ├─permits.cod
| ├─dependencies.cod
| ├─notes.cod
| ├─legal.cod
| └─readme.md
├─*docs
| ├─index.md
| ├─api_reference.md
| ├─pros_and_cons.md
| ├─tutorials.md
| └─notes.md
├─source
| ├─main.coa
| ├─dispatcher.coa
| ├─handler.coa
| └─manager.coa








Language


Find the prime numbers in 0~999 (inclusive)

(
  .class(.int,
    ().(
      .super(.args, ),
    ),
    ().(
      .range(i, .this.**(0.5).+(1)).for((i).(
        .then.%(i).!=(0).then(
          .return(.false, ),
        ), ),
      ),
      .return(.true, ),
    ).put(is_prime),
  ).put(.int, ),
  .list().put(primes, ),
  1000.range().for((i, ).(
    i.is_prime.then(().(
      primes.+(i),
    ), ),
  ), ),
  list.length.==(1).then(
    .out('There was "primes.length" prime number:", ),
  ).not().then(
    .out('There were "primes.length" prime numbers:", ), 
  ),
  list.length.range().for((i).(
    .out('"i.string.fill(3, )" "list(i)"', ),
  ), ),
)













          

      

      

    

  

    
      
          
            
  
Environment

Environments are also like pods, where there are three main directories: /info, /docs, and /source.

Tip for drawing boxes and trees in Unicode (Wikipedia) [https://en.wikipedia.org/wiki/List_of_Unicode_characters#Box_Drawing]

The example below runs a (fictional) server.

coenv
├─info
│ ├─main.cod
│ ├─permits.cod
│ ├─dependencies.cod
│ ├─notes.cod
│ ├─legal.cod
│ └─readme.md
├─docs
│ ├─index.md
│ ├─api_reference.md
│ ├─pros_and_cons.md
│ ├─tutorials.md
│ └─notes.md
├─source
│ ├─main.coa
│ └─.test
│   ├─main.coa
│   └─timer.coa
└─cache
  └─server.pod
    ├─license.md
    ├─readme.md
    ├─info.cod
    ├─docs
    | ├─index.md
    | ├─api_reference.md
    | ├─pros_and_cons.md
    | ├─tutorials.md
    | └─notes.md
    └─source
      ├─main.coa
      ├─dispatcher.coa
      ├─handler.coa
      └─manager.coa





Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States and/or other countries.





          

      

      

    

  

    
      
          
            
  
File Types

| Extension     | Name                   | Description                                                  |
| ————- | ———————- | ———————————————————— |
| .coa        | Coa Program            | Executable Coa file. .cop alias.                           |
| .cod        | Coa Data               | Executable Coa file. Cannot invoke non-simple functions.     |
| .pod        | Coa Pod                | Executable (compressed) Coa Pod.                             |
| .tar.gz.pod | Coa Compressed Pod     | Executable (compressed) Coa Pod. This example uses .tar.gz |





          

      

      

    

  

    
      
          
            
  
[OLD] Coa Spec

[image: ../_images/Page-Old-orange.svg]Page | Old


Program

Every program may start with ( and end with ). It can contain zero or more Command.

(
  *Command*
)








Command

Every command is a EvokeCall or DefineCall or Object. May have a , at the end.




EvokeCall

EvokeCall evokes a Function object with required and optional argument(s).




DefineCall

DefineCall defines an object (Object) to a variable (Id).




Object

Object is a entity that takes up memory. When compiled to Go, is becomes a native Go entity (usually, depends on type).







          

      

      

    

  

    
      
          
            
  
Coa OS Spec


Filesystem

This example is for a Coa OS System with name server-0 with a example proxy server.

/
└─pods/
  ├─local.server-0.context/
  ├─local.server-0.context.network/
  ├─local.server-0.context.hard/
  ├─local.server-0.context.soft/
  ├─dev.coa.os.core/
  ├─dev.coa.os.core.overseer/
  ├─dev.coa.os.core.file/
  ├─dev.coa.os.core.file.history/
  ├─dev.coa.os.core.file.overseer/
  ├─dev.coa.os.core.contact/
  ├─dev.coa.os.core.contact.linux/
  ├─dev.coa.os.core.contact.linux.alpine/
  ├─dev.coa.os.core.comm.server/
  ├─dev.coa.os.core.comm.client/
  ├─dev.coa.os.core.comm.peer/
  ├─dev.coa.core/
  ├─dev.coa.core.overseer/
  ├─dev.coa.core.io/
  ├─dev.coa.core.io.file/
  ├─dev.coa.core.io.comm/
  ├─dev.coa.core.io.contact/
  ├─dev.coa.core.math/
  ├─dev.coa.core.math.simple/
  ├─dev.coa.core.math.matrix/
  ├─dev.coa.core.object/
  ├─dev.coa.lang/
  ├─dev.coa.lang.overseer/
  ├─dev.coa.lang.go/
  ├─dev.coa.lang.go.yaegi/
  ├─dev.coa.lang.go.golang/
  ├─dev.coa.lang.go.parser/
  ├─dev.coa.lang.py.parser/
  ├─dev.coa.idx.proxy/
  ├─dev.coa.idx.proxy.overseer/
  ├─dev.coa.idx.proxy.handler/
  └─dev.coa.idx.proxy.requester/





dev.coa.os.core.file.overseer.pod oversees all other pods except dev.coa.os.core.pod.







          

      

      

    

  

    
      
          
            
  
Pods (packages)

Coa “pods” are files (an archive file) that contain collections of Coa programs, like packages in other languages
and containers (app containerization). Coa pods are meant to be small, and
access other pods for additional functionality. A good example of this is
Flask, where there is basic functionality in the Flask package, but has
plugins such as Flask-Admin to add extra functionality.

Each pod should be structured as follows. Objects starting with * are optional. .md files can also be other file formats (e.g. .rst, .txt, .html)

server.pod
├─license.md
├─readme.md
├─info.cod
├─docs
| ├─index.md
| ├─api_reference.md
| ├─pros_and_cons.md
| ├─tutorials.md
| └─notes.md
├─source
| ├─main.coa
| ├─dispatcher.coa
| ├─handler.coa
| └─manager.coa









          

      

      

    

  

    
      
          
            
  
Example Pod

This is a example pod of a (fictional) server. This will not go over the source files.


Structure

server.pod
├─license.md
├─readme.md
├─info.cod
├─docs
| ├─index.md
| ├─api_reference.md
| ├─pros_and_cons.md
| ├─tutorials.md
| └─notes.md
├─source
| ├─main.coa
| ├─dispatcher.coa
| ├─handler.coa
| └─manager.coa








license.md

LICENSE TEXT (GPL, Apache, MIT, etc)








readme.md/README.md

# Server

A random server example for Coa.








info.cod

(
  pod.=(
    name.=(
      'dev.coa.side.examples.server',
    ),
    uuid.=(
      'c9206d24-96b0-4ea4-af30-ad94897ab605',
    ),
    desc.=(
      'A random server example for Coa.',
    ),
    ver.=(
      '1.2.3-Δ',
      name.=(
        'Trusty Tool',
      ),
    ),
    index.=(
      'dev.coa.index',
    ),
    source.=(
      'dev.coa.index/source/dev.coa.side.example.server',
    ),
  ),
),








docs/index.md/docs/README.md

# Server Docs

Documentation work in progress.








docs/*

# Server Docs

...











          

      

      

    

  

    
      
          
            
  
Pod Names

Pod names are identifiers for pods that should be unique.

This pod name is for the io.streams core Coa pod.

dev.coa.core.io.streams






Versions

Versions can be included in pod names.

dev.coa.core.io.streams('0.0.0-α')











          

      

      

    

  

    
      
          
            
  
Pod UUID

Pod UUIDs are identifiers of pods that should not be used by default. These should be unique.

cbea70d6-599e-4826-b0c9-d8ea4f21467d









          

      

      

    

  _static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/file.png





_static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          Coa Documentation
        


      


    
  

_static/up.png





_static/up-pressed.png





